In this paper we study derived categories of nodal singularities. We show that for all nodal singularities there is a categorical resolution whose kernel is generated by a 2 or 3-spherical object, depending on the dimension. We apply this result to the case of nodal cubic fourfolds, where we describe the kernel generator of the categorical resolution as an object in the bounded derived category of the associated degree six K3 surface. This paper originated from one of the problem sessions at the Interactive Workshop and Hausdorff School “Hyperkahler Geometry”, Bonn, September 6–10, 2021.

Kernels of categorical resolutions of nodal singularities / Cattani, Warren; Giovenzana, Franco; Liu, Shengxuan; Magni, Pablo; Martinelli, Luigi; Pertusi, Laura; Song, Jieao. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - 72:6(2023), pp. 3077-3105. [10.1007/s12215-023-00895-3]

Kernels of categorical resolutions of nodal singularities

Cattani, Warren;
2023-01-01

Abstract

In this paper we study derived categories of nodal singularities. We show that for all nodal singularities there is a categorical resolution whose kernel is generated by a 2 or 3-spherical object, depending on the dimension. We apply this result to the case of nodal cubic fourfolds, where we describe the kernel generator of the categorical resolution as an object in the bounded derived category of the associated degree six K3 surface. This paper originated from one of the problem sessions at the Interactive Workshop and Hausdorff School “Hyperkahler Geometry”, Bonn, September 6–10, 2021.
2023
72
6
3077
3105
10.1007/s12215-023-00895-3
https://arxiv.org/abs/2209.12853
Cattani, Warren; Giovenzana, Franco; Liu, Shengxuan; Magni, Pablo; Martinelli, Luigi; Pertusi, Laura; Song, Jieao
File in questo prodotto:
File Dimensione Formato  
s12215-023-00895-3.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 519.22 kB
Formato Adobe PDF
519.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/143410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact