It is known that on RCD spaces one can define a distributional Ricci tensor Ric. Here we give a fine description of this object by showing that it admits the polar decomposition (Formula presented.) for a suitable non-negative measure |Ric| and unitary tensor field ω. The regularity of both the mass measure and of the polar vector are also described. The representation provided here allows to answer some open problems about the structure of the Ricci tensor in such singular setting. Our discussion also covers the case of Hessians of convex functions and, under suitable assumptions on the base space, of the Sectional curvature operator.

Fine Representation of Hessian of Convex Functions and Ricci Tensor on RCD Spaces / Brena, C.; Gigli, N.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - (2024). [10.1007/s11118-024-10153-5]

Fine Representation of Hessian of Convex Functions and Ricci Tensor on RCD Spaces

Brena C.;Gigli N.
2024-01-01

Abstract

It is known that on RCD spaces one can define a distributional Ricci tensor Ric. Here we give a fine description of this object by showing that it admits the polar decomposition (Formula presented.) for a suitable non-negative measure |Ric| and unitary tensor field ω. The regularity of both the mass measure and of the polar vector are also described. The representation provided here allows to answer some open problems about the structure of the Ricci tensor in such singular setting. Our discussion also covers the case of Hessians of convex functions and, under suitable assumptions on the base space, of the Sectional curvature operator.
2024
10.1007/s11118-024-10153-5
https://arxiv.org/abs/2310.07536
Brena, C.; Gigli, N.
File in questo prodotto:
File Dimensione Formato  
Hessian and Riccirev.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 488.3 kB
Formato Adobe PDF
488.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s11118-024-10153-5.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 511.45 kB
Formato Adobe PDF
511.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/143730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact