Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location. Our results show a transition in duration coding: from monotonic and spatially-dependent in early visual cortex to unimodal and spatially-invariant in frontal cortex. Along the dorsal visual stream, particularly in the intraparietal sulcus (IPS), neuronal populations show common selective responses to both spatial and temporal information. In the IPS, spatial and temporal topographic organizations are also linked, although duration maps are smaller, less clustered, and more variable across participants. These findings help identify the mechanisms underlying human perception of visual duration and characterize the functional link between time and space processing, highlighting the importance of their interactions in shaping brain responses.
The neural link between stimulus duration and spatial location in the human visual hierarchy / Centanino, Valeria; Fortunato, Gianfranco; Bueti, Domenica. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 15:1(2024). [10.1038/s41467-024-54336-5]
The neural link between stimulus duration and spatial location in the human visual hierarchy
Centanino, ValeriaFormal Analysis
;Fortunato, GianfrancoFormal Analysis
;Bueti, Domenica
Conceptualization
2024-01-01
Abstract
Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location. Our results show a transition in duration coding: from monotonic and spatially-dependent in early visual cortex to unimodal and spatially-invariant in frontal cortex. Along the dorsal visual stream, particularly in the intraparietal sulcus (IPS), neuronal populations show common selective responses to both spatial and temporal information. In the IPS, spatial and temporal topographic organizations are also linked, although duration maps are smaller, less clustered, and more variable across participants. These findings help identify the mechanisms underlying human perception of visual duration and characterize the functional link between time and space processing, highlighting the importance of their interactions in shaping brain responses.File | Dimensione | Formato | |
---|---|---|---|
s41467-024-54336-5.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.