In this paper we identify the problem of equivariant vortex counting in a (2,2) supersymmetric two dimensional quiver gauged linear sigma model with that of computing the equivariant Gromov–Witten invariants of the GIT quotient target space determined by the quiver. We provide new contour integral formulae for the I and J-functions encoding the equivariant quantum cohomology of the target space. Its chamber structure is shown to be encoded in the analytical properties of the integrand. This is explained both via general arguments and by checking several key cases. We show how several results in equivariant Gromov–Witten theory follow just by deforming the integration contour. In particular, we apply our formalism to compute Gromov–Witten invariants of the C3/Zn orbifold, of the Uhlembeck (partial) compactification of the moduli space of instantons on C2, and of An and Dn singularities both in the orbifold and resolved phases. Moreover, we analyse dualities of quantum cohomology rings of holomorphic vector bundles over Grassmannians, which are relevant to BPS Wilson loop algebrae.

Vortex Partition Functions, Wall Crossing and Equivariant Gromov-Witten Invariants / Bonelli, G.; Sciarappa, A.; Tanzini, A.; Vasko, P.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 333:2(2015), pp. 717-760. [10.1007/s00220-014-2193-8]

Vortex Partition Functions, Wall Crossing and Equivariant Gromov-Witten Invariants

Bonelli, G.
;
Sciarappa, A.;Tanzini, A.;Vasko, P.
2015-01-01

Abstract

In this paper we identify the problem of equivariant vortex counting in a (2,2) supersymmetric two dimensional quiver gauged linear sigma model with that of computing the equivariant Gromov–Witten invariants of the GIT quotient target space determined by the quiver. We provide new contour integral formulae for the I and J-functions encoding the equivariant quantum cohomology of the target space. Its chamber structure is shown to be encoded in the analytical properties of the integrand. This is explained both via general arguments and by checking several key cases. We show how several results in equivariant Gromov–Witten theory follow just by deforming the integration contour. In particular, we apply our formalism to compute Gromov–Witten invariants of the C3/Zn orbifold, of the Uhlembeck (partial) compactification of the moduli space of instantons on C2, and of An and Dn singularities both in the orbifold and resolved phases. Moreover, we analyse dualities of quantum cohomology rings of holomorphic vector bundles over Grassmannians, which are relevant to BPS Wilson loop algebrae.
2015
333
2
717
760
https://doi.org/10.1007/s00220-014-2193-8
https://arxiv.org/abs/1307.5997
Bonelli, G.; Sciarappa, A.; Tanzini, A.; Vasko, P.
File in questo prodotto:
File Dimensione Formato  
vortex-cmp.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 550.04 kB
Formato Adobe PDF
550.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 31
social impact