Mutations in PARK7/DJ-1 are associated with autosomal recessive, early onset Parkinson disease (PD). DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. Here we show that DJ-1 plays an essential role in the expression of rearranged during transfection (RET), a receptor for the glial cell line-derived neurotrophic factor, a neuroprotective molecule for dopaminergic neurons, the main target of degeneration in PD. The inducible loss of DJ-1 triggers the establishment of hypoxia and the production of reactive oxygen species that stabilize the hypoxia-inducible factor-1α (HIF-1a). HIF-1a expression is required for RET down-regulation. This study establishes for the first time a molecular link between the lack of functional DJ-1 and the glial cell line-derived neurotrophic factor signaling pathway that may explain the adult-onset loss of dopaminergic neurons. Furthermore, it suggests that hypoxia may play an important role in PD.
Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells
Vilotti, Sandra;Gustincich, Stefano
2010-01-01
Abstract
Mutations in PARK7/DJ-1 are associated with autosomal recessive, early onset Parkinson disease (PD). DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. Here we show that DJ-1 plays an essential role in the expression of rearranged during transfection (RET), a receptor for the glial cell line-derived neurotrophic factor, a neuroprotective molecule for dopaminergic neurons, the main target of degeneration in PD. The inducible loss of DJ-1 triggers the establishment of hypoxia and the production of reactive oxygen species that stabilize the hypoxia-inducible factor-1α (HIF-1a). HIF-1a expression is required for RET down-regulation. This study establishes for the first time a molecular link between the lack of functional DJ-1 and the glial cell line-derived neurotrophic factor signaling pathway that may explain the adult-onset loss of dopaminergic neurons. Furthermore, it suggests that hypoxia may play an important role in PD.File | Dimensione | Formato | |
---|---|---|---|
Foti 2010 J Biol Chem 285 18565-74.pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.