We prove an abstract result giving a ⟨t⟩ℰ upper bound on the growth of the Sobolev norms of a time-dependent Schrödinger equation of the form iψ˙=H0ψ+V(t)ψ. {Here} H0 is assumed to be the Hamiltonian of a steep quantum integrable system and to be a {pseudodifferential} operator of order d>1 ; V(t) is a time-dependent family of pseudodifferential operators, unbounded, but of order b

Growth of Sobolev norms in quasi-integrable quantum systems / Bambusi, Dario; Langella, Beatrice. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - 582:4(2025), pp. 997-1035. [10.24033/asens.2623]

Growth of Sobolev norms in quasi-integrable quantum systems

LANGELLA, Beatrice
2025-01-01

Abstract

We prove an abstract result giving a ⟨t⟩ℰ upper bound on the growth of the Sobolev norms of a time-dependent Schrödinger equation of the form iψ˙=H0ψ+V(t)ψ. {Here} H0 is assumed to be the Hamiltonian of a steep quantum integrable system and to be a {pseudodifferential} operator of order d>1 ; V(t) is a time-dependent family of pseudodifferential operators, unbounded, but of order b
2025
582
4
997
1035
https://arxiv.org/abs/2202.04505
Bambusi, Dario; Langella, Beatrice
File in questo prodotto:
File Dimensione Formato  
qn_bambusi_langella_arxiv.pdf

accesso aperto

Descrizione: Versione preprint equivalente a quella pubblicata
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 476.75 kB
Formato Adobe PDF
476.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/149050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact