We propose some arguments supporting an M-theory derivation of the duality recently discovered by Alday, Gaiotto and Tachikawa between two-dimensional conformal field theories and N=2 superconformal gauge theories in four dimensions. We find that A_{N-1} Toda field theory is the simplest two-dimensional conformal field theory quantizing the moduli of N M5-branes wrapped on a Riemann surface. This leads us to identify chiral operators of the N=2 gauge theories with W-algebra currents. As a check of this correspondence we study some relevant OPE's obtaining that Nekrasov's partition function satisfies W-geometry constraints.

Hitchin systems, N=2 gauge theories and W-gravity / Bonelli, G.; Tanzini, A.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 691:2(2010), pp. 111-115. [10.1016/j.physletb.2010.06.027]

Hitchin systems, N=2 gauge theories and W-gravity

Bonelli, G.;Tanzini, A.
2010-01-01

Abstract

We propose some arguments supporting an M-theory derivation of the duality recently discovered by Alday, Gaiotto and Tachikawa between two-dimensional conformal field theories and N=2 superconformal gauge theories in four dimensions. We find that A_{N-1} Toda field theory is the simplest two-dimensional conformal field theory quantizing the moduli of N M5-branes wrapped on a Riemann surface. This leads us to identify chiral operators of the N=2 gauge theories with W-algebra currents. As a check of this correspondence we study some relevant OPE's obtaining that Nekrasov's partition function satisfies W-geometry constraints.
2010
691
2
111
115
https://doi.org/10.1016/j.physletb.2010.06.027
https://arxiv.org/abs/0909.4031
Bonelli, G.; Tanzini, A.
File in questo prodotto:
File Dimensione Formato  
005.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 169.11 kB
Formato Adobe PDF
169.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 68
social impact