The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e. g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.

Nonmonotonic Effects of Migration in Subdivided Populations

Lombardo, Pierangelo;Gambassi, Andrea;Dall'Asta, Luca
2014-01-01

Abstract

The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e. g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.
2014
112
14
1
5
148101
https://arxiv.org/abs/1310.5072
Lombardo, Pierangelo; Gambassi, Andrea; Dall'Asta, Luca
File in questo prodotto:
File Dimensione Formato  
46b-SupplMaterial.pdf

non disponibili

Licenza: Non specificato
Dimensione 848.3 kB
Formato Adobe PDF
848.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
46a-PRL.112.148101.pdf

non disponibili

Licenza: Non specificato
Dimensione 720.71 kB
Formato Adobe PDF
720.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/17009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact