Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species.

Identification of antisense long noncoding RNAs that function as SINEUPs in human cells / Schein, A.; Zucchelli, S.; Kauppinen, S.; Gustincich, Stefano; Carninci, P.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6(2016). [10.1038/srep33605]

Identification of antisense long noncoding RNAs that function as SINEUPs in human cells

Gustincich, Stefano;
2016

Abstract

Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species.
6
33605
10.1038/srep33605
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028707/
Schein, A.; Zucchelli, S.; Kauppinen, S.; Gustincich, Stefano; Carninci, P.
File in questo prodotto:
File Dimensione Formato  
Schein 2016 Sci Rep 6 33605.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/17262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact