We consider the entanglement entropy for holographic field theories in finite volume. We show that the Araki-Lieb inequality is saturated for large enough subregions, implying that the thermal entropy can be recovered from the knowledge of the region and its complement. We observe that this actually is forced upon us in holographic settings due to non-trivial features of the causal wedges associated with a given boundary region. In the process, we present an infinite set of extremal surfaces in Schwarzschild-AdS geometry anchored on a given entangling surface. We also offer some speculations regarding the homology constraint required for computing holographic entanglement entropy. © 2013 SISSA

Holographic entanglement plateaux / Hubeny, V. E.; Maxfield, H.; Rangamani, M.; Tonni, E.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2013:8(2013), pp. 1-36. [10.1007/JHEP08(2013)092]

Holographic entanglement plateaux

Tonni, E.
2013-01-01

Abstract

We consider the entanglement entropy for holographic field theories in finite volume. We show that the Araki-Lieb inequality is saturated for large enough subregions, implying that the thermal entropy can be recovered from the knowledge of the region and its complement. We observe that this actually is forced upon us in holographic settings due to non-trivial features of the causal wedges associated with a given boundary region. In the process, we present an infinite set of extremal surfaces in Schwarzschild-AdS geometry anchored on a given entangling surface. We also offer some speculations regarding the homology constraint required for computing holographic entanglement entropy. © 2013 SISSA
2013
2013
8
1
36
092
https://doi.org/10.1007/JHEP08(2013)092
Hubeny, V. E.; Maxfield, H.; Rangamani, M.; Tonni, E.
File in questo prodotto:
File Dimensione Formato  
Hubeny2013_Article_HolographicEntanglementPlateau.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 103
social impact