Abstract: A Vaidya type geometry describing gravitation collapse in asymptotically Lifshitz spacetime with hyperscaling violation provides a simple holographic model for thermalization near a quantum critical point with non-trivial dynamic and hyperscaling violation exponents. The allowed parameter regions are constrained by requiring that the matter energy momentum tensor satisfies the null energy condition. We present a combination of analytic and numerical results on the time evolution of holographic entanglement entropy in such backgrounds for different shaped boundary regions and study various scaling regimes, generalizing previous work by Liu and Suh. © 2014, The Author(s).
Holographic thermalization with Lifshitz scaling and hyperscaling violation / Fonda, Piermarco; Franti, L.; Keranen, V.; Keski Vakkuri, E.; Thorlacius, L.; Tonni, Erik. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2014:8(2014), pp. 1-50. [10.1007/JHEP08(2014)051]
Holographic thermalization with Lifshitz scaling and hyperscaling violation
Fonda, Piermarco;Tonni, Erik
2014-01-01
Abstract
Abstract: A Vaidya type geometry describing gravitation collapse in asymptotically Lifshitz spacetime with hyperscaling violation provides a simple holographic model for thermalization near a quantum critical point with non-trivial dynamic and hyperscaling violation exponents. The allowed parameter regions are constrained by requiring that the matter energy momentum tensor satisfies the null energy condition. We present a combination of analytic and numerical results on the time evolution of holographic entanglement entropy in such backgrounds for different shaped boundary regions and study various scaling regimes, generalizing previous work by Liu and Suh. © 2014, The Author(s).File | Dimensione | Formato | |
---|---|---|---|
2014 Fonda.pdf
accesso aperto
Descrizione: Open Access Journal
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.