Group III metabotropic glutamate receptors (mGluR III) are known to decrease glutamate release and to play an important role in controlling pain as documented in neuropathic pain models. Much less is known about their potential neuroprotective effect against excitotoxicity that is considered important for damage onset of spinal cord injury. Using rat spinal cord organotypic slices model, we investigated if mGluR III receptor activation might contrast excitotoxic cell death evoked by kainic acid (0.1 mM) applied for 1h and followed by wash for further 24h. The specific agonist of mGluR III receptors L-(+)-2-amino-4-phosphonobutyric acid (L-AP4; 1 µM) was either co-applied with kainic acid or administered during washout. Cell death was quantified in terms of percentage of pyknotic nuclei, total number of neurons, motoneurons and astrocytes. Furthermore we developed for future long-term studies an in vitro model of Spinal Cord Isolated from newborn rats maintained for 3 days in medium. We characterize this model using both immunohistochemistry and electrophysiological recordings.

New Spinal cord models: Characterization of Excitotoxicity and Neuroprotection

Olivieri, Dario
2015-06-15

Abstract

Group III metabotropic glutamate receptors (mGluR III) are known to decrease glutamate release and to play an important role in controlling pain as documented in neuropathic pain models. Much less is known about their potential neuroprotective effect against excitotoxicity that is considered important for damage onset of spinal cord injury. Using rat spinal cord organotypic slices model, we investigated if mGluR III receptor activation might contrast excitotoxic cell death evoked by kainic acid (0.1 mM) applied for 1h and followed by wash for further 24h. The specific agonist of mGluR III receptors L-(+)-2-amino-4-phosphonobutyric acid (L-AP4; 1 µM) was either co-applied with kainic acid or administered during washout. Cell death was quantified in terms of percentage of pyknotic nuclei, total number of neurons, motoneurons and astrocytes. Furthermore we developed for future long-term studies an in vitro model of Spinal Cord Isolated from newborn rats maintained for 3 days in medium. We characterize this model using both immunohistochemistry and electrophysiological recordings.
15-giu-2015
Nistri, Andrea
Olivieri, Dario
File in questo prodotto:
File Dimensione Formato  
1963_34473_PhD Thesis - Dario Olivieri.pdf

Open Access dal 01/01/2019

Tipologia: Tesi
Licenza: Non specificato
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/3892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact