The aim of my PhD project was to investigate multisensory perception and multimodal recognition abilities in the rat, to better understand the underlying perceptual strategies and neuronal mechanisms. I have chosen to carry out this project on the laboratory rat, for two reasons. First, the rat is a flexible and highly accessible experimental model, where it is possible to combine state-of-the-art neurophysiological approaches (such as multi-electrode neuronal recordings) with behavioral investigation of perception and (more in general) cognition. Second, extensive research concerning multimodal integration has already been conducted in this species, both at the neurophysiological and behavioral level. My thesis work has been organized in two projects: a psychophysical assessment of object categorization abilities in rats, and a neurophysiological study of neuronal tuning in the primary visual cortex of anaesthetized rats. In both experiments, unisensory (visual and tactile) and multisensory (visuo-tactile) stimulation has been used for training and testing, depending on the task. The first project has required development of a new experimental rig for the study of object categorization in rat, using solid objects, so as to be able to assess their recognition abilities under different modalities: vision, touch and both together. The second project involved an electrophysiological study of rat primary visual cortex, during visual, tactile and visuo-tactile stimulation, with the aim of understanding whether any interaction between these modalities exists, in an area that is mainly deputed to one of them. The results of both of the studies are still preliminary, but they already offer some interesting insights on the defining features of these abilities.
Perceptual Strategies and Neuronal Underpinnings underlying Pattern Recognition through Visual and Tactile Sensory Modalities in Rats / Di Filippo, Alessandro. - (2015 May 29).
Perceptual Strategies and Neuronal Underpinnings underlying Pattern Recognition through Visual and Tactile Sensory Modalities in Rats
Di Filippo, Alessandro
2015-05-29
Abstract
The aim of my PhD project was to investigate multisensory perception and multimodal recognition abilities in the rat, to better understand the underlying perceptual strategies and neuronal mechanisms. I have chosen to carry out this project on the laboratory rat, for two reasons. First, the rat is a flexible and highly accessible experimental model, where it is possible to combine state-of-the-art neurophysiological approaches (such as multi-electrode neuronal recordings) with behavioral investigation of perception and (more in general) cognition. Second, extensive research concerning multimodal integration has already been conducted in this species, both at the neurophysiological and behavioral level. My thesis work has been organized in two projects: a psychophysical assessment of object categorization abilities in rats, and a neurophysiological study of neuronal tuning in the primary visual cortex of anaesthetized rats. In both experiments, unisensory (visual and tactile) and multisensory (visuo-tactile) stimulation has been used for training and testing, depending on the task. The first project has required development of a new experimental rig for the study of object categorization in rat, using solid objects, so as to be able to assess their recognition abilities under different modalities: vision, touch and both together. The second project involved an electrophysiological study of rat primary visual cortex, during visual, tactile and visuo-tactile stimulation, with the aim of understanding whether any interaction between these modalities exists, in an area that is mainly deputed to one of them. The results of both of the studies are still preliminary, but they already offer some interesting insights on the defining features of these abilities.File | Dimensione | Formato | |
---|---|---|---|
1963_34470_Thesis.pdf
Open Access dal 02/01/2018
Tipologia:
Tesi
Licenza:
Non specificato
Dimensione
26.65 MB
Formato
Adobe PDF
|
26.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.