The outline of my thesis is the following: In Chapter 1, I present more details related to the motivation for studying silica. In Chapter 2, I mainly discuss the force matching method which has been used to construct the force field, and some methology. In Chapter 3, I show how the performance of the potential and how it can be used to calculate infrared and Raman spectra, focusing on the the calcuation of the spectra for high-temperature phase. Based on the calculated specta and the structural analysis, more profound understanding of the silica high-temperature phase is given. I will show in Chapters 4 and 5, pressure–induced changes in oxygen packing in quartz and cristobalite can be understood based on well-known transition paths for close-packing lattices. I will present in Chapter 6, a microscopic picture of the compression mechanisms of silica glass. In order to advance the understanding of pressure-induced amorphization, in Chapter 7 I also studied one example of the silica clathrate (type I) under pressure. I will then summarise the main results of my work in Chapter 8.

Modelling structure, phase transition, and vibrational spectroscopy of silica at extreme conditions / Liang, Yunfeng. - (2007 Oct 26).

Modelling structure, phase transition, and vibrational spectroscopy of silica at extreme conditions

Liang, Yunfeng
2007-10-26

Abstract

The outline of my thesis is the following: In Chapter 1, I present more details related to the motivation for studying silica. In Chapter 2, I mainly discuss the force matching method which has been used to construct the force field, and some methology. In Chapter 3, I show how the performance of the potential and how it can be used to calculate infrared and Raman spectra, focusing on the the calcuation of the spectra for high-temperature phase. Based on the calculated specta and the structural analysis, more profound understanding of the silica high-temperature phase is given. I will show in Chapters 4 and 5, pressure–induced changes in oxygen packing in quartz and cristobalite can be understood based on well-known transition paths for close-packing lattices. I will present in Chapter 6, a microscopic picture of the compression mechanisms of silica glass. In order to advance the understanding of pressure-induced amorphization, in Chapter 7 I also studied one example of the silica clathrate (type I) under pressure. I will then summarise the main results of my work in Chapter 8.
26-ott-2007
Scandolo, Sandro
Liang, Yunfeng
File in questo prodotto:
File Dimensione Formato  
1963_2514_Yunfeng_Liang_PhD_Thesis.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/3932
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact