The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives...

Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients / Fanelli, Francesco. - (2012 May 28).

Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients

Fanelli, Francesco
2012-05-28

Abstract

The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives...
Agrachev, Andrey
Colombini, Ferruccio; Danchin, Raphaël
Fanelli, Francesco
File in questo prodotto:
File Dimensione Formato  
1963_5882_PhD_thesis_Fanelli.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/4420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact