The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives...
Autori: | |
Autori: | Fanelli, Francesco |
Titolo: | Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients |
Relatore/i interni: | |
Relatore/i esterni: | Colombini, Ferruccio; Danchin, Raphaël |
Data di pubblicazione: | 28-mag-2012 |
Appare nelle tipologie: | 8.1 PhD thesis |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1963_5882_PhD_thesis_Fanelli.pdf | Tesi | Non specificato | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.