In the present Thesis, we deal mainly with the subclass of Hamiltonian evolutionary PDEs and their Poisson brackets (PBs). We address the problem of classifying discrete differential-geometric PBs (dDGPBs) of any fixed order on target space of dimension 1 and describing their compatible pencils. Furthermore, we explain a new criterium about the existence of tri-Hamiltonian structures for nonlinear wave systems.
Classification problems for Hamiltonian evolutionary equations and their discretizations / Parodi, Emanuele. - (2012 Oct 25).
Classification problems for Hamiltonian evolutionary equations and their discretizations
Parodi, Emanuele
2012-10-25
Abstract
In the present Thesis, we deal mainly with the subclass of Hamiltonian evolutionary PDEs and their Poisson brackets (PBs). We address the problem of classifying discrete differential-geometric PBs (dDGPBs) of any fixed order on target space of dimension 1 and describing their compatible pencils. Furthermore, we explain a new criterium about the existence of tri-Hamiltonian structures for nonlinear wave systems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1963_6287_E.Parodi_Thesis.pdf
accesso aperto
Tipologia:
Tesi
Licenza:
Non specificato
Dimensione
784.83 kB
Formato
Adobe PDF
|
784.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.