Systems biology is an emergent interdisciplinary field of study whose main goal is to understand the global properties and functions of a biological system by investigating its structure and dynamics [74]. This highlevel knowledge can be reached only with a coordinated approach involving researchers with different backgrounds in molecular biology, the various omics (like genomics, proteomics, metabolomics), computer science and dynamical systems theory. The history of systems biology as a distinct discipline began in the 1960s, and saw an impressive growth since year 2000, originated by the increased accumulation of biological information, the development of highthroughput experimental techniques, the use of powerful computer systems for calculations and database hosting, and the spread of Internet as the standard medium for information diffusion [77]. In the last few years, our research group tried to tackle a set of systems biology problems which look quite diverse, but share some topics like biological networks and system dynamics, which are of our interest and clearly fundamental for this field. In fact, the first issue we studied (covered in Part I) was the reverse engineering of largescale gene regulatory networks. Inferring a gene network is the process of identifying interactions among genes from experimental data (tipically microarray expression profiles) using computational methods [6]. Our aim was to compare some of the most popular association network algorithms (the only ones applicable at a genomewide level) in different conditions. In particular we verified the predictive power of similarity measures both of direct type (like correlations and mutual information) and of conditional type (partial correlations and conditional mutual information) applied on different kinds of experiments (like data taken at equilibrium or time courses) and on both synthetic and real microarray data (for E. coli and S. cerevisiae). In our simulations we saw that all network inference algorithms obtain better performances from data produced with “structural” perturbations (like gene knockouts at steady state) than with just dynamical perturbations (like time course measurements or changes of the initial expression levels). Moreover, our analysis showed differences in the performances of the algorithms: direct methods are more robust in detecting stable relationships (like belonging to the same protein complex), while conditional methods are better at causal interactions (e.g. transcription factor–binding site interactions), especially in presence of combinatorial transcriptional regulation. Even if time course microarray experiments are not particularly useful for inferring gene networks, they can instead give a great amount of information about the dynamical evolution of a biological process, provided that the measurements have a good time resolution. Recently, such a dataset has been published [119] for the yeast metabolic cycle, a wellknown process where yeast cells synchronize with respect to oxidative and reductive functions. In that paper, the longperiod respiratory oscillations were shown to be reflected in genomewide periodic patterns in gene expression. As explained in Part II, we analyzed these time series in order to elucidate the dynamical role of posttranscriptional regulation (in particular mRNA stability) in the coordination of the cycle. We found that for periodic genes, arranged in classes according either to expression profile or to function, the pulses of mRNA abundance have phase and width which are directly proportional to the corresponding turnover rates. Moreover, the cascade of events which occurs during the yeast metabolic cycle (and their correlation with mRNA turnover) reflects to a large extent the gene expression program observable in other dynamical contexts such as the response to stresses or stimuli. The concepts of network and of systems dynamics return also as major arguments of Part III. In fact, there we present a study of some dynamical properties of the socalled chemical reaction networks, which are sets of chemical species among which a certain number of reactions can occur. These networks can be modeled as systems of ordinary differential equations for the species concentrations, and the dynamical evolution of these systems has been theoretically studied since the 1970s [47, 65]. Over time, several independent conditions have been proved concerning the capacity of a reaction network, regardless of the (often poorly known) reaction parameters, to exhibit multiple equilibria. This is a particularly interesting characteristic for biological systems, since it is required for the switchlike behavior observed during processes like intracellular signaling and cell differentiation. Inspired by those works, we developed a new open source software package for MATLAB, called ERNEST, which, by checking these various criteria on the structure of a chemical reaction network, can exclude the multistationarity of the corresponding reaction system. The results of this analysis can be used, for example, for model discrimination: if for a multistable biological process there are multiple candidate reaction models, it is possible to eliminate some of them by proving that they are always monostationary. Finally, we considered the related property of monotonicity for a reaction network. Monotone dynamical systems have the tendency to converge to an equilibrium and do not present chaotic behaviors. Most biological systems have the same features, and are therefore considered to be monotone or nearmonotone [85, 116]. Using the notion of fundamental cycles from graph theory, we proved some theoretical results in order to determine how distant is a given biological network from being monotone. In particular, we showed that the distance to monotonicity of a network is equal to the minimal number of negative fundamental cycles of the corresponding Jgraph, a signed multigraph which can be univocally associated to a dynamical system.
Systems biology approaches to the dynamics of gene expression and chemical reactions / Soranzo, Nicola.  (2009 Nov 09).
Systems biology approaches to the dynamics of gene expression and chemical reactions
Soranzo, Nicola
20091109
Abstract
Systems biology is an emergent interdisciplinary field of study whose main goal is to understand the global properties and functions of a biological system by investigating its structure and dynamics [74]. This highlevel knowledge can be reached only with a coordinated approach involving researchers with different backgrounds in molecular biology, the various omics (like genomics, proteomics, metabolomics), computer science and dynamical systems theory. The history of systems biology as a distinct discipline began in the 1960s, and saw an impressive growth since year 2000, originated by the increased accumulation of biological information, the development of highthroughput experimental techniques, the use of powerful computer systems for calculations and database hosting, and the spread of Internet as the standard medium for information diffusion [77]. In the last few years, our research group tried to tackle a set of systems biology problems which look quite diverse, but share some topics like biological networks and system dynamics, which are of our interest and clearly fundamental for this field. In fact, the first issue we studied (covered in Part I) was the reverse engineering of largescale gene regulatory networks. Inferring a gene network is the process of identifying interactions among genes from experimental data (tipically microarray expression profiles) using computational methods [6]. Our aim was to compare some of the most popular association network algorithms (the only ones applicable at a genomewide level) in different conditions. In particular we verified the predictive power of similarity measures both of direct type (like correlations and mutual information) and of conditional type (partial correlations and conditional mutual information) applied on different kinds of experiments (like data taken at equilibrium or time courses) and on both synthetic and real microarray data (for E. coli and S. cerevisiae). In our simulations we saw that all network inference algorithms obtain better performances from data produced with “structural” perturbations (like gene knockouts at steady state) than with just dynamical perturbations (like time course measurements or changes of the initial expression levels). Moreover, our analysis showed differences in the performances of the algorithms: direct methods are more robust in detecting stable relationships (like belonging to the same protein complex), while conditional methods are better at causal interactions (e.g. transcription factor–binding site interactions), especially in presence of combinatorial transcriptional regulation. Even if time course microarray experiments are not particularly useful for inferring gene networks, they can instead give a great amount of information about the dynamical evolution of a biological process, provided that the measurements have a good time resolution. Recently, such a dataset has been published [119] for the yeast metabolic cycle, a wellknown process where yeast cells synchronize with respect to oxidative and reductive functions. In that paper, the longperiod respiratory oscillations were shown to be reflected in genomewide periodic patterns in gene expression. As explained in Part II, we analyzed these time series in order to elucidate the dynamical role of posttranscriptional regulation (in particular mRNA stability) in the coordination of the cycle. We found that for periodic genes, arranged in classes according either to expression profile or to function, the pulses of mRNA abundance have phase and width which are directly proportional to the corresponding turnover rates. Moreover, the cascade of events which occurs during the yeast metabolic cycle (and their correlation with mRNA turnover) reflects to a large extent the gene expression program observable in other dynamical contexts such as the response to stresses or stimuli. The concepts of network and of systems dynamics return also as major arguments of Part III. In fact, there we present a study of some dynamical properties of the socalled chemical reaction networks, which are sets of chemical species among which a certain number of reactions can occur. These networks can be modeled as systems of ordinary differential equations for the species concentrations, and the dynamical evolution of these systems has been theoretically studied since the 1970s [47, 65]. Over time, several independent conditions have been proved concerning the capacity of a reaction network, regardless of the (often poorly known) reaction parameters, to exhibit multiple equilibria. This is a particularly interesting characteristic for biological systems, since it is required for the switchlike behavior observed during processes like intracellular signaling and cell differentiation. Inspired by those works, we developed a new open source software package for MATLAB, called ERNEST, which, by checking these various criteria on the structure of a chemical reaction network, can exclude the multistationarity of the corresponding reaction system. The results of this analysis can be used, for example, for model discrimination: if for a multistable biological process there are multiple candidate reaction models, it is possible to eliminate some of them by proving that they are always monostationary. Finally, we considered the related property of monotonicity for a reaction network. Monotone dynamical systems have the tendency to converge to an equilibrium and do not present chaotic behaviors. Most biological systems have the same features, and are therefore considered to be monotone or nearmonotone [85, 116]. Using the notion of fundamental cycles from graph theory, we proved some theoretical results in order to determine how distant is a given biological network from being monotone. In particular, we showed that the distance to monotonicity of a network is equal to the minimal number of negative fundamental cycles of the corresponding Jgraph, a signed multigraph which can be univocally associated to a dynamical system.File  Dimensione  Formato  

1963_6404_PhD_NicolaSoranzo.pdf
accesso aperto
Tipologia:
Tesi
Licenza:
Non specificato
Dimensione
2.31 MB
Formato
Adobe PDF

2.31 MB  Adobe PDF  Visualizza/Apri 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.