We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g2. Copyright L. Piroli et al.

Quantum quenches to the attractive one-dimensional Bose gas: exact results / Piroli, Lorenzo; Essler, Fabian Helmut Leonha; Calabrese, Pasquale. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 1:1(2016), pp. 1-34. [10.21468/SciPostPhys.1.1.001]

Quantum quenches to the attractive one-dimensional Bose gas: exact results

Piroli, Lorenzo;ESSLER, Fabian Helmut Leonha;Calabrese, Pasquale
2016-01-01

Abstract

We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g2. Copyright L. Piroli et al.
2016
1
1
1
34
UNSP 001
10.21468/SciPostPhys.1.1.001
https://arxiv.org/abs/1604.08141
http://cdsads.u-strasbg.fr/abs/2016arXiv160408141P
Piroli, Lorenzo; Essler, Fabian Helmut Leonha; Calabrese, Pasquale
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_1_1_001.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 435.18 kB
Formato Adobe PDF
435.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/48245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 53
social impact