We study quantum quenches in the XXZ spin-1/2 Heisenberg chain from families of ferromagnetic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local and quasi-local conservation laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for the diagonal ensemble finding excellent agreement and thus providing a very accurate test for the validity of the complete GGE. Furthermore, we compute the diagonal entropy in the post-quench steady state. By careful finite-size scaling analyses of the exact diagonalization results, we show that the diagonal entropy is equal to one half the Yang-Yang entropy corresponding to the complete GGE. Finally, the complete GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial states are better suited than others considered in the literature to experimentally test the validity of the complete GGE and contrast it to the failure of the local GGE.

Correlations and diagonal entropy after quantum quenches in XXZ chains

Piroli, Lorenzo;VERNIER, Eric Jamil;Calabrese, Pasquale;
2017-01-01

Abstract

We study quantum quenches in the XXZ spin-1/2 Heisenberg chain from families of ferromagnetic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local and quasi-local conservation laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for the diagonal ensemble finding excellent agreement and thus providing a very accurate test for the validity of the complete GGE. Furthermore, we compute the diagonal entropy in the post-quench steady state. By careful finite-size scaling analyses of the exact diagonalization results, we show that the diagonal entropy is equal to one half the Yang-Yang entropy corresponding to the complete GGE. Finally, the complete GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial states are better suited than others considered in the literature to experimentally test the validity of the complete GGE and contrast it to the failure of the local GGE.
2017
95
5
1
13
054308
https://arxiv.org/abs/1611.08859
http://cdsads.u-strasbg.fr/abs/2017PhRvB..95e4308P
Piroli, Lorenzo; Vernier, Eric Jamil; Calabrese, Pasquale; Rigol, M.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.054308(1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 592.19 kB
Formato Adobe PDF
592.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/48271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 46
social impact