Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a rst step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1:5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0:5 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L=LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of 3 e-folding times. We also discuss how the detailed properties and the speci c evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described above, we further investigate the coevolution of galaxies and hosted SMBHs throughout the history of the Universe by applying a statis- tical, model-independent approach, based on the continuity equation and the abundance matching technique. We present analytical solutions of the continuity equation with- out source term, to reconstruct the SMBH mass function (BHMF) at different redshifts from the AGN luminosity function. Such an approach includes the physically-motivated AGN lightcurves we have tested and discussed, which describe the evolution of both the Eddington ratio and the radiative efficiency from slim- to thin-disc conditions. We nicely reproduce the local estimates of the BHMF, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies hosting an AGN with given Eddington ratio. We employ the same approach to reconstruct the observed stellar mass function (SMF) at different redshifts, starting from the ultraviolet (UV) and FIR luminosity functions associated to star formation in galaxies. Our results imply that the buildup of stars and BHs in galaxies occurs via in-situ processes, with dry mergers playing a marginal role, at least for stellar masses . 3 1011M⊙ and BH masses . 109M⊙, where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique, to link the stellar and BH content of galaxies to the gravitationally dominant DM component. The re- sulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. They may also be operationally implemented in numerical simulations to populate DM ha- los, or to gauge subgrid physics. Moreover, they can be exploited to investigate the galaxy/AGN clustering as a function of redshift, stellar/BH mass, and/or luminosity. The clustering properties of BHs and galaxies are found to be in full agreement with current observations, so further validating our results from the continuity equation. Finally, our analysis highlights that: (i) the fraction of AGNs observed in the slim-disc regime, where anyway most of the BH mass is accreted, increases with redshift; (ii) already at z & 6, a substantial amount of dust must have formed, over timescales . 108 yr, in strongly starforming galaxies, making these sources well within the reach of ALMA surveys in (sub-)millimeter bands.

Coevolution of supermassive Black Holes and Galaxies across cosmic times / Aversa, Rossella. - (2015 Oct 28).

Coevolution of supermassive Black Holes and Galaxies across cosmic times

Aversa, Rossella
2015-10-28

Abstract

Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a rst step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1:5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0:5 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L=LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of 3 e-folding times. We also discuss how the detailed properties and the speci c evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described above, we further investigate the coevolution of galaxies and hosted SMBHs throughout the history of the Universe by applying a statis- tical, model-independent approach, based on the continuity equation and the abundance matching technique. We present analytical solutions of the continuity equation with- out source term, to reconstruct the SMBH mass function (BHMF) at different redshifts from the AGN luminosity function. Such an approach includes the physically-motivated AGN lightcurves we have tested and discussed, which describe the evolution of both the Eddington ratio and the radiative efficiency from slim- to thin-disc conditions. We nicely reproduce the local estimates of the BHMF, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies hosting an AGN with given Eddington ratio. We employ the same approach to reconstruct the observed stellar mass function (SMF) at different redshifts, starting from the ultraviolet (UV) and FIR luminosity functions associated to star formation in galaxies. Our results imply that the buildup of stars and BHs in galaxies occurs via in-situ processes, with dry mergers playing a marginal role, at least for stellar masses . 3 1011M⊙ and BH masses . 109M⊙, where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique, to link the stellar and BH content of galaxies to the gravitationally dominant DM component. The re- sulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. They may also be operationally implemented in numerical simulations to populate DM ha- los, or to gauge subgrid physics. Moreover, they can be exploited to investigate the galaxy/AGN clustering as a function of redshift, stellar/BH mass, and/or luminosity. The clustering properties of BHs and galaxies are found to be in full agreement with current observations, so further validating our results from the continuity equation. Finally, our analysis highlights that: (i) the fraction of AGNs observed in the slim-disc regime, where anyway most of the BH mass is accreted, increases with redshift; (ii) already at z & 6, a substantial amount of dust must have formed, over timescales . 108 yr, in strongly starforming galaxies, making these sources well within the reach of ALMA surveys in (sub-)millimeter bands.
28-ott-2015
Danese, Luigi
Lapi, Andrea
Salucci, Paolo
Aversa, Rossella
File in questo prodotto:
File Dimensione Formato  
1963_34812_Tesi.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact