We obtain the strong asymptotics of polynomials pn(λ), λ ∈ C, orthogonal with respect to measures in the complex plane of the form e−N (|λ|2s −tλs −tλs ) dA(λ), where s is a positive integer, t is a complex parameter and dA stands for the area measure in the plane. Such problem has its origin from normal matrix models. We study the asymptotic behaviour of pn(λ) in the limit n, N → ∞ in such a way that n/N → T constant. Such asymptotic behaviour has two distinguished regimes according to the topology of the limiting support of the eigenvalues distribution of the normal matrix model. If 0 < |t|2 < T/s, the eigenvalue distribution support is a simply connected compact set of the complex plane, while for |t|2 > T/s the eigenvalue distribution support consists of s connected components. Correspondingly the support of the limiting zero distribution of the orthogonal polynomials consists of a closed contour contained in each connected component. Our asymptotic analysis is obtained by reducing the planar orthogonality conditions of the poly- nomials to an equivalent contour integral orthogonality conditions. The strong asymptotics for the orthogonal polynomials is obtained from the corresponding Riemann–Hilbert problem by the Deift– Zhou nonlinear steepest descent method.

Orthogonal Polynomials for a Class of Measures with Discrete Rotational Symmetries in the Complex Plane / Balogh, Ferenc; Grava, Tamara; Merzi, Dario. - In: CONSTRUCTIVE APPROXIMATION. - ISSN 0176-4276. - 46:(2017), pp. 109-169. [10.1007/s00365-016-9356-0]

Orthogonal Polynomials for a Class of Measures with Discrete Rotational Symmetries in the Complex Plane

Balogh, Ferenc;Grava, Tamara
;
Merzi, Dario
2017-01-01

Abstract

We obtain the strong asymptotics of polynomials pn(λ), λ ∈ C, orthogonal with respect to measures in the complex plane of the form e−N (|λ|2s −tλs −tλs ) dA(λ), where s is a positive integer, t is a complex parameter and dA stands for the area measure in the plane. Such problem has its origin from normal matrix models. We study the asymptotic behaviour of pn(λ) in the limit n, N → ∞ in such a way that n/N → T constant. Such asymptotic behaviour has two distinguished regimes according to the topology of the limiting support of the eigenvalues distribution of the normal matrix model. If 0 < |t|2 < T/s, the eigenvalue distribution support is a simply connected compact set of the complex plane, while for |t|2 > T/s the eigenvalue distribution support consists of s connected components. Correspondingly the support of the limiting zero distribution of the orthogonal polynomials consists of a closed contour contained in each connected component. Our asymptotic analysis is obtained by reducing the planar orthogonality conditions of the poly- nomials to an equivalent contour integral orthogonality conditions. The strong asymptotics for the orthogonal polynomials is obtained from the corresponding Riemann–Hilbert problem by the Deift– Zhou nonlinear steepest descent method.
2017
46
109
169
https://link.springer.com/article/10.1007/s00365-016-9356-0/fulltext.html
Balogh, Ferenc; Grava, Tamara; Merzi, Dario
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs00365-016-9356-0.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/48990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact