We establish an algebraic contraction rate in a modified Wasserstein distance for solutions of scalar conservation laws with uniformly convex flux. We also show that our estimate is optimal w.r.t. scaling in time and discuss why it gives non-trivial information in relation to the stability of the rarefaction wave. (C) 2015 Published by Elsevier Inc.

Algebraic contraction rate for distance between entropy solutions of scalar conservation laws / Esselborn, Elias; Gigli, Nicola; Otto, Felix. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 435:2(2016), pp. 1525-1551. [10.1016/j.jmaa.2015.11.027]

Algebraic contraction rate for distance between entropy solutions of scalar conservation laws

Gigli, Nicola;
2016-01-01

Abstract

We establish an algebraic contraction rate in a modified Wasserstein distance for solutions of scalar conservation laws with uniformly convex flux. We also show that our estimate is optimal w.r.t. scaling in time and discuss why it gives non-trivial information in relation to the stability of the rarefaction wave. (C) 2015 Published by Elsevier Inc.
2016
435
2
1525
1551
https://doi.org/10.1016/j.jmaa.2015.11.027
Esselborn, Elias; Gigli, Nicola; Otto, Felix
File in questo prodotto:
File Dimensione Formato  
ContractionConsLaw_Final_2014.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 436.92 kB
Formato Adobe PDF
436.92 kB Adobe PDF Visualizza/Apri
main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 479.59 kB
Formato Adobe PDF
479.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/51024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact