We establish an algebraic contraction rate in a modified Wasserstein distance for solutions of scalar conservation laws with uniformly convex flux. We also show that our estimate is optimal w.r.t. scaling in time and discuss why it gives non-trivial information in relation to the stability of the rarefaction wave. (C) 2015 Published by Elsevier Inc.
Algebraic contraction rate for distance between entropy solutions of scalar conservation laws / Esselborn, Elias; Gigli, Nicola; Otto, Felix. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 435:2(2016), pp. 1525-1551. [10.1016/j.jmaa.2015.11.027]
Algebraic contraction rate for distance between entropy solutions of scalar conservation laws
Gigli, Nicola;
2016-01-01
Abstract
We establish an algebraic contraction rate in a modified Wasserstein distance for solutions of scalar conservation laws with uniformly convex flux. We also show that our estimate is optimal w.r.t. scaling in time and discuss why it gives non-trivial information in relation to the stability of the rarefaction wave. (C) 2015 Published by Elsevier Inc.File | Dimensione | Formato | |
---|---|---|---|
ContractionConsLaw_Final_2014.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
436.92 kB
Formato
Adobe PDF
|
436.92 kB | Adobe PDF | Visualizza/Apri |
main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
479.59 kB
Formato
Adobe PDF
|
479.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.