We elucidate the relation between Painlev\'e equations and four-dimensional rank one N=2 theories by identifying the connection associated to Painlev\'e isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated to gauge theories and by studying the corresponding renormalisation group flow. Based on this correspondence we provide long-distance expansions at various canonical rays for all Painlev\'e functions in terms of magnetic and dyonic Nekrasov partition functions for N=2 SQCD and Argyres-Douglas theories at self-dual Omega background ϵ1+ϵ2=0, or equivalently in terms of c=1 irregular conformal blocks.

On Painlevé/gauge theory correspondence / Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 107:12(2017), pp. 2359-2413. [10.1007/s11005-017-0983-6]

On Painlevé/gauge theory correspondence

Bonelli, G.;Maruyoshi, K.;Sciarappa, A.;Tanzini, A.
2017-01-01

Abstract

We elucidate the relation between Painlev\'e equations and four-dimensional rank one N=2 theories by identifying the connection associated to Painlev\'e isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated to gauge theories and by studying the corresponding renormalisation group flow. Based on this correspondence we provide long-distance expansions at various canonical rays for all Painlev\'e functions in terms of magnetic and dyonic Nekrasov partition functions for N=2 SQCD and Argyres-Douglas theories at self-dual Omega background ϵ1+ϵ2=0, or equivalently in terms of c=1 irregular conformal blocks.
2017
107
12
2359
2413
https://doi.org/10.1007/s11005-017-0983-6
http://www.kluweronline.com/issn/0377-9017
https://arxiv.org/abs/1612.06235
Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A.
File in questo prodotto:
File Dimensione Formato  
lmp.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 717.37 kB
Formato Adobe PDF
717.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/61340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 53
social impact