We show that the hypercohomology of the ChevalleyâEilenbergâde Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a HochschildâSerre type spectral sequence attached to an extension of Lie algebroids.
Lie algebroid cohomology as a derived functor / Bruzzo, Ugo. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 483:(2017), pp. 245-261. [10.1016/j.jalgebra.2017.03.030]
Lie algebroid cohomology as a derived functor
Bruzzo, Ugo
2017-01-01
Abstract
We show that the hypercohomology of the ChevalleyâEilenbergâde Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a HochschildâSerre type spectral sequence attached to an extension of Lie algebroids.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
jalg.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
326.25 kB
Formato
Adobe PDF
|
326.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.