We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the expansion of the volume at regular points of the exponential map. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of geometric structures, including all sub-Riemannian manifolds.

Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics / Agrachev, A.; Barilari, D.; Paoli, E.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 69:3(2019), pp. 1187-1228. [10.5802/aif.3268]

Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics

Agrachev A.;Barilari D.;Paoli E.
2019-01-01

Abstract

We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the expansion of the volume at regular points of the exponential map. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of geometric structures, including all sub-Riemannian manifolds.
2019
69
3
1187
1228
https://doi.org/10.5802/aif.3268
https://arxiv.org/abs/1602.08745
Agrachev, A.; Barilari, D.; Paoli, E.
File in questo prodotto:
File Dimensione Formato  
distor.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 389.98 kB
Formato Adobe PDF
389.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/72531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact