In Reduced Basis (RB) method, the Galerkin projection on the reduced space does not guarantee the inf-sup approximation stability even if the stable Taylor-Hood Finite Element pair is chosen. Therefore in this PhD thesis we aim to build a stabilized RB method suitable for the approximation of parametrized viscous flows. Starting from the state of the art we study the residual based stabilization techniques for parametrized viscous flows in a RB setting. We are interested in the approximation of the velocity and pressure. extit{Offline-online} computational splitting is implemented and extit{offline-only stabilization}, and extit{offline-online stabilization} are compared (as well as without a stabilization approach). Different test cases are illustrated and several classical stabilization approaches like Brezzi-Pitkaranta, Franca-Hughes, streamline upwind Petrov-Galerkin, Galerkin Least Square are recast into a parametric reduced order setting. The RB method is introduced as a Galerkin projection into reduced spaces, generated by basis functions chosen through a greedy (steady cases) and POD-greedy (unsteady cases) algorithms. This approach is then compared with the supremizer options to guarantee the approximation stability by increasing the corresponding parametric inf-sup condition. We also implement a rectification method to correct the consistency of extit{offline-only stabilization} approach. Several numerical results for both steady and unsteady problems are presented and compared. The goal is two-fold: to guarantee the RB inf-sup stability and to guarantee online computational savings by reducing the dimension of the online reduced basis system.

Stabilized reduced basis methods for the approximation of parametrized viscous flows / Ali, Shafqat. - (2018 Sep 26).

Stabilized reduced basis methods for the approximation of parametrized viscous flows

Ali, Shafqat
2018

Abstract

In Reduced Basis (RB) method, the Galerkin projection on the reduced space does not guarantee the inf-sup approximation stability even if the stable Taylor-Hood Finite Element pair is chosen. Therefore in this PhD thesis we aim to build a stabilized RB method suitable for the approximation of parametrized viscous flows. Starting from the state of the art we study the residual based stabilization techniques for parametrized viscous flows in a RB setting. We are interested in the approximation of the velocity and pressure. extit{Offline-online} computational splitting is implemented and extit{offline-only stabilization}, and extit{offline-online stabilization} are compared (as well as without a stabilization approach). Different test cases are illustrated and several classical stabilization approaches like Brezzi-Pitkaranta, Franca-Hughes, streamline upwind Petrov-Galerkin, Galerkin Least Square are recast into a parametric reduced order setting. The RB method is introduced as a Galerkin projection into reduced spaces, generated by basis functions chosen through a greedy (steady cases) and POD-greedy (unsteady cases) algorithms. This approach is then compared with the supremizer options to guarantee the approximation stability by increasing the corresponding parametric inf-sup condition. We also implement a rectification method to correct the consistency of extit{offline-only stabilization} approach. Several numerical results for both steady and unsteady problems are presented and compared. The goal is two-fold: to guarantee the RB inf-sup stability and to guarantee online computational savings by reducing the dimension of the online reduced basis system.
Rozza, Gianluigi
Ballarin, Francesco
Ali, Shafqat
File in questo prodotto:
File Dimensione Formato  
Ali_PhD_Thesis.pdf

embargo fino al 31/10/2018

Tipologia: Tesi
Licenza: Non specificato
Dimensione 5.29 MB
Formato Adobe PDF
5.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/82794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact