The problem this thesis is addressing is to improve an existing classification in 10 categories of the images captured by SEM microscopes. In particular, the challenge faced is to classify those images according to a hierarchical tree structure of sub-categories without requiring any further human labelling effort. In order to uncover intrinsic structures among the images, a procedure involving supervised and unsupervised feature learning, as well as cluster analysis is defined. Moreover, to reduce the bias introduced in the supervised phase, various strategies focusing on features of different nature and level of abstraction are analyzed.
Feature learning and clustering analysis for images classification / Coronica, Piero. - (2018 Oct 26).
Feature learning and clustering analysis for images classification
Coronica, Piero
2018-10-26
Abstract
The problem this thesis is addressing is to improve an existing classification in 10 categories of the images captured by SEM microscopes. In particular, the challenge faced is to classify those images according to a hierarchical tree structure of sub-categories without requiring any further human labelling effort. In order to uncover intrinsic structures among the images, a procedure involving supervised and unsupervised feature learning, as well as cluster analysis is defined. Moreover, to reduce the bias introduced in the supervised phase, various strategies focusing on features of different nature and level of abstraction are analyzed.File | Dimensione | Formato | |
---|---|---|---|
Coronica.pdf
accesso aperto
Tipologia:
Tesi
Licenza:
Non specificato
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.