The Lévy-Gromov inequality states that round spheres have the least isoperimetric profile (normalized by total volume) among Riemannian manifolds with a fixed positive lower bound on the Ricci tensor. In this note we study critical metrics corresponding to the Lévy-Gromov inequality and prove that, in two-dimensions, this criticality condition is quite rigid, as it characterizes round spheres and projective planes.

Rigidity for critical points in the Lévy-Gromov inequality / Cavalletti, Fabio; Maggi, Francesco; Mondino, Andrea. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 289:3-4(2018), pp. 1191-1197. [10.1007/s00209-017-1993-x]

Rigidity for critical points in the Lévy-Gromov inequality

Cavalletti, Fabio;
2018-01-01

Abstract

The Lévy-Gromov inequality states that round spheres have the least isoperimetric profile (normalized by total volume) among Riemannian manifolds with a fixed positive lower bound on the Ricci tensor. In this note we study critical metrics corresponding to the Lévy-Gromov inequality and prove that, in two-dimensions, this criticality condition is quite rigid, as it characterizes round spheres and projective planes.
2018
289
3-4
1191
1197
https://doi.org/10.1007/s00209-017-1993-x
https://link.springer.com/article/10.1007%2Fs00209-017-1993-x
Cavalletti, Fabio; Maggi, Francesco; Mondino, Andrea
File in questo prodotto:
File Dimensione Formato  
Cavalletti2018_Article_RigidityForCriticalPointsInThe.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 373.39 kB
Formato Adobe PDF
373.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/85648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact