The thermal conductivity of classical multicomponent fluids is seemingly affected by the intrinsic arbitrariness in the definition of the atomic energies, and it is ill conditioned numerically, when evaluated from the Green-Kubo theory of linear response. To cope with these two problems, we introduce two new concepts: a convective invariance principle for transport coefficients, in the first case, and multivariate cepstral analysis, in the second. A combination of these two concepts allows one to substantially reduce the noise affecting the estimate of the thermal conductivity from equilibrium molecular dynamics, even for one-component systems.

Theory and Numerical Simulation of Heat Transport in Multicomponent Systems / Bertossa, R.; Grasselli, F.; Ercole, L.; Baroni, S.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 122:25(2019), pp. 1-6. [10.1103/PhysRevLett.122.255901]

Theory and Numerical Simulation of Heat Transport in Multicomponent Systems

Bertossa, R.
;
Grasselli, F.;Ercole, L.;Baroni, S.
2019

Abstract

The thermal conductivity of classical multicomponent fluids is seemingly affected by the intrinsic arbitrariness in the definition of the atomic energies, and it is ill conditioned numerically, when evaluated from the Green-Kubo theory of linear response. To cope with these two problems, we introduce two new concepts: a convective invariance principle for transport coefficients, in the first case, and multivariate cepstral analysis, in the second. A combination of these two concepts allows one to substantially reduce the noise affecting the estimate of the thermal conductivity from equilibrium molecular dynamics, even for one-component systems.
122
25
1
6
255901
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.255901
https://arxiv.org/abs/1802.08006
Bertossa, R.; Grasselli, F.; Ercole, L.; Baroni, S.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.122.255901.pdf

non disponibili

Descrizione: file scaricabile dalla rete
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 569.43 kB
Formato Adobe PDF
569.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/98656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact