We introduce preordered semi-orthogonal decompositions (psod-s) of dg-categories. We show that homotopy limits of dg-categories equipped with compatible psod-s carry a natural psod. This gives a way to glue semi-orthogonal decompositions along faithfully flat covers, extending the main result of [4]. As applications we will construct semi-orthogonal decompositions for root stacks of log pairs (X,D) where D is a (not necessarily simple) normal crossing divisor, generalizing results from [17] and [3]. Further we will compute the Kummer flat K-theory of general log pairs (X,D), generalizing earlier results of Hagihara and Nizioł in the simple normal crossing case [15], [23].
Gluing semi-orthogonal decompositions / Scherotzke, S.; Sibilla, N.; Talpo, M.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 559:(2020), pp. 1-32. [10.1016/j.jalgebra.2020.03.022]
Gluing semi-orthogonal decompositions
Sibilla N.;
2020-01-01
Abstract
We introduce preordered semi-orthogonal decompositions (psod-s) of dg-categories. We show that homotopy limits of dg-categories equipped with compatible psod-s carry a natural psod. This gives a way to glue semi-orthogonal decompositions along faithfully flat covers, extending the main result of [4]. As applications we will construct semi-orthogonal decompositions for root stacks of log pairs (X,D) where D is a (not necessarily simple) normal crossing divisor, generalizing results from [17] and [3]. Further we will compute the Kummer flat K-theory of general log pairs (X,D), generalizing earlier results of Hagihara and Nizioł in the simple normal crossing case [15], [23].File | Dimensione | Formato | |
---|---|---|---|
psods-revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
405.15 kB
Formato
Adobe PDF
|
405.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.