We study the relation between class S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding τ-function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to WN free fermion correlators on the torus.

Circular quiver gauge theories, isomonodromic deformations and WN fermions on the torus / Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 111:3(2021), pp. 1-38. [10.1007/s11005-020-01343-4]

Circular quiver gauge theories, isomonodromic deformations and WN fermions on the torus

Bonelli G.;Del Monte F.;Gavrylenko P.;Tanzini A.
2021-01-01

Abstract

We study the relation between class S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding τ-function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to WN free fermion correlators on the torus.
2021
111
3
1
38
83
10.1007/s11005-020-01343-4
https://arxiv.org/abs/1909.07990
Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A.
File in questo prodotto:
File Dimensione Formato  
Bonelli2021_Article_CircularQuiverGaugeTheoriesIso.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 755.37 kB
Formato Adobe PDF
755.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact