We propose an adaptive finite element algorithm to approximate solutions of elliptic problems whose forcing data is locally defined and is approximated by regularization (or mollifica-tion). We show that the energy error decay is quasi-optimal in two-dimensional space and suboptimal in three-dimensional space. Numerical simulations are provided to confirm our findings.

Adaptive Finite Element Approximations for Elliptic Problems using Regularized Forcing Data / Heltai, Luca; Lei, Wenyu. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 61:2(2023), pp. 431-456. [10.1137/21M1455991]

Adaptive Finite Element Approximations for Elliptic Problems using Regularized Forcing Data

Heltai, Luca;Lei, Wenyu
2023-01-01

Abstract

We propose an adaptive finite element algorithm to approximate solutions of elliptic problems whose forcing data is locally defined and is approximated by regularization (or mollifica-tion). We show that the energy error decay is quasi-optimal in two-dimensional space and suboptimal in three-dimensional space. Numerical simulations are provided to confirm our findings.
2023
61
2
431
456
10.1137/21M1455991
https://arxiv.org/abs/2110.15029
Heltai, Luca; Lei, Wenyu
File in questo prodotto:
File Dimensione Formato  
2023_SINUM_adaptive_ifem.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/131270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact