We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.

Generalized matrix models and AGT correspondence at all genera / Bonelli, G.; Kazunobu, M.; Tanzini, A.; Futoshi, Y.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2011:7(2011), pp. 1-23. [10.1007/JHEP07(2011)055]

Generalized matrix models and AGT correspondence at all genera

Bonelli, G.;Tanzini, A.;
2011-01-01

Abstract

We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.
2011
2011
7
1
23
https://doi.org/10.1007/JHEP07(2011)055
https://arxiv.org/abs/1011.5417
Bonelli, G.; Kazunobu, M.; Tanzini, A.; Futoshi, Y.
File in questo prodotto:
File Dimensione Formato  
00123.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 440.41 kB
Formato Adobe PDF
440.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact