In this paper we prove Morse index theorems for a big class of constrained variational problems on graphs. Such theorems are useful in various physical and geometric applications. Our formulas compute the difference of Morse indices of two Hessians related to two different graphs or two different sets of boundary conditions. Some applications such as the iteration formulas and lower bounds for the index are proved.

Index theorems for graph-parametrized optimal control problems / Agrachev, Andrei; Baranzini, Stefano; Beschastnyi, Ivan. - In: NONLINEARITY. - ISSN 0951-7715. - 36:5(2023), pp. 2792-2838. [10.1088/1361-6544/acc5d4]

Index theorems for graph-parametrized optimal control problems

Baranzini, Stefano
;
2023-01-01

Abstract

In this paper we prove Morse index theorems for a big class of constrained variational problems on graphs. Such theorems are useful in various physical and geometric applications. Our formulas compute the difference of Morse indices of two Hessians related to two different graphs or two different sets of boundary conditions. Some applications such as the iteration formulas and lower bounds for the index are proved.
2023
36
5
2792
2838
https://doi.org/10.1007/s11005-021-01366-5
https://arxiv.org/abs/2201.09719
Agrachev, Andrei; Baranzini, Stefano; Beschastnyi, Ivan
File in questo prodotto:
File Dimensione Formato  
Agrachev_2023_Nonlinearity_36_2792.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 751.89 kB
Formato Adobe PDF
751.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/133511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact