We describe the emergence of topological singularities in periodicmediawithin the Ginzburg-Landau model and the core-radius approach. The energy functionals of both models are denoted by E-epsilon,E- delta, where e represent the coherence length (in the Ginzburg-Landau model) or the core-radius size (in the core-radius approach) and delta denotes the periodicity scale. We carry out the Gamma-convergence analysis of E-epsilon,E- delta as epsilon -> 0 and delta = delta(epsilon) -> 0 in the vertical bar log epsilon vertical bar scaling regime, showing that the Gamma-limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameterlambda = min{1, lim (epsilon -> 0) vertical bar log delta(epsilon)vertical bar/vertical bar log epsilon vertical bar}(upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than epsilon(lambda) we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than epsilon(lambda) the concentration process takes place "after" homogenization.

Topological Singularities in Periodic Media: Ginzburg-Landau and Core-Radius Approaches / Alicandro, R; Braides, A; Cicalese, M; De Luca, L; Piatnitski, A. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 243:2(2022), pp. 559-609. [10.1007/s00205-021-01731-7]

Topological Singularities in Periodic Media: Ginzburg-Landau and Core-Radius Approaches

Alicandro, R;Braides, A;Cicalese, M;De Luca, L
;
2022-01-01

Abstract

We describe the emergence of topological singularities in periodicmediawithin the Ginzburg-Landau model and the core-radius approach. The energy functionals of both models are denoted by E-epsilon,E- delta, where e represent the coherence length (in the Ginzburg-Landau model) or the core-radius size (in the core-radius approach) and delta denotes the periodicity scale. We carry out the Gamma-convergence analysis of E-epsilon,E- delta as epsilon -> 0 and delta = delta(epsilon) -> 0 in the vertical bar log epsilon vertical bar scaling regime, showing that the Gamma-limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameterlambda = min{1, lim (epsilon -> 0) vertical bar log delta(epsilon)vertical bar/vertical bar log epsilon vertical bar}(upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than epsilon(lambda) we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than epsilon(lambda) the concentration process takes place "after" homogenization.
2022
243
2
559
609
10.1007/s00205-021-01731-7
https://arxiv.org/abs/2012.12559
Alicandro, R; Braides, A; Cicalese, M; De Luca, L; Piatnitski, A
File in questo prodotto:
File Dimensione Formato  
ABCDP_final.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 559.9 kB
Formato Adobe PDF
559.9 kB Adobe PDF Visualizza/Apri
Topological.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 733.1 kB
Formato Adobe PDF
733.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact