We investigate convexity properties of the set of eigenvalue tuples of n x n real symmetric matrices, all of whose k x k (where k < n is fixed) minors are positive semidefinite. We prove that the set lambda(Sn,k) of eigenvalue vectors of all such matrices is star-shaped with respect to the nonnegative orthant Rn >0 and not convex already when (n, k) = (4, 2). We also show that k is the smallest integer such that Sn,kis a linear projection of a set described by linear matrix inequalities of size k. (c) 2023 Elsevier Ltd. All rights reserved.

On eigenvalues of symmetric matrices with PSD principal submatrices / Kozhasov, Khazhgali. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 119:(2023), pp. 90-100. [10.1016/j.jsc.2023.02.003]

On eigenvalues of symmetric matrices with PSD principal submatrices

Kozhasov, Khazhgali
2023-01-01

Abstract

We investigate convexity properties of the set of eigenvalue tuples of n x n real symmetric matrices, all of whose k x k (where k < n is fixed) minors are positive semidefinite. We prove that the set lambda(Sn,k) of eigenvalue vectors of all such matrices is star-shaped with respect to the nonnegative orthant Rn >0 and not convex already when (n, k) = (4, 2). We also show that k is the smallest integer such that Sn,kis a linear projection of a set described by linear matrix inequalities of size k. (c) 2023 Elsevier Ltd. All rights reserved.
2023
119
90
100
https://arxiv.org/abs/2103.15811
Kozhasov, Khazhgali
File in questo prodotto:
File Dimensione Formato  
2103.15811v1.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 140.98 kB
Formato Adobe PDF
140.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact