In this thesis we study some issues of the nonperturbative dynamics of N=1 supersymmetric gauge theories. we consider SQCD with two chiral superfields in the adjoint representation and superpotential deformations, whose flows fall into Arnold's ADE classification of simple singularities. We study in detail the confining phase deformation of the An SQCD and its Seiberg dual in the classical and quantum chiral ring and find the duality map by means of the DV method. Then we analyze the deformation of the Dn+2 SQCD and describe its three classical branches and its cubic curve. In all the cases we can continuously interpolate between the classical vacua by follopwing a path in the moduli space. We are led to the proposal that, for an N=1 supersymmetric gauge theory with a mass gap, the degree of its algebraIc curve corresponds to the number of semiclassical branches.

ADE superpotentials, Seiberg Duality and Matrix Models / Mazzucato, Luca. - (2005 Oct 04).

ADE superpotentials, Seiberg Duality and Matrix Models

Mazzucato, Luca
2005-10-04

Abstract

In this thesis we study some issues of the nonperturbative dynamics of N=1 supersymmetric gauge theories. we consider SQCD with two chiral superfields in the adjoint representation and superpotential deformations, whose flows fall into Arnold's ADE classification of simple singularities. We study in detail the confining phase deformation of the An SQCD and its Seiberg dual in the classical and quantum chiral ring and find the duality map by means of the DV method. Then we analyze the deformation of the Dn+2 SQCD and describe its three classical branches and its cubic curve. In all the cases we can continuously interpolate between the classical vacua by follopwing a path in the moduli space. We are led to the proposal that, for an N=1 supersymmetric gauge theory with a mass gap, the degree of its algebraIc curve corresponds to the number of semiclassical branches.
4-ott-2005
Schwimmer, Adam
Mazzucato, Luca
File in questo prodotto:
File Dimensione Formato  
1963_5299_PhD_Mazzucato_Luca.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 12.93 MB
Formato Adobe PDF
12.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact