A central problem in the theory of strongly correlated fermion systems, concerns the nature of their low-lying excitations. It is generally accepted that, except for special cases with symmetry breaking, three dimensional (3D) interacting Fermi systems, are well described in terms of weakly correlated quasi-particles with quantum numbers in one-toone correspondence with those identifying the excitations of a non-interacting Fermi gas. This is the basic assumption underlying the Landau theory of Fermi liquids (FL), which was originally proposed as a phenomenological description of strongly interacting fermions by Landau in early 1956[1), an then established microscopically by Nozieres and Luttinger in 1962[2]. Quite a different scenario occurs in lD interacting Fermi systems. Apart from specific models developing gaps in the excitation spectrum, most fermion systems in one dimension with repulsive interactions, do have low-lying gapless excitations, like ordinary Fermi liquids, but totally different from the quasi-particles predicted by Landau theory. The low-energy behavior of most of these lD interacting fermion systems with gapless linear excitations, can be understood in terms of few model dependent constants, which parametrize all the long-wavelength properties...

New results for interacting Fermi systems: the 2D Hubbard model at low density and the two coupled chain problem / Fabrizio, Michele. - (1992 Nov 02).

New results for interacting Fermi systems: the 2D Hubbard model at low density and the two coupled chain problem

Fabrizio, Michele
1992-11-02

Abstract

A central problem in the theory of strongly correlated fermion systems, concerns the nature of their low-lying excitations. It is generally accepted that, except for special cases with symmetry breaking, three dimensional (3D) interacting Fermi systems, are well described in terms of weakly correlated quasi-particles with quantum numbers in one-toone correspondence with those identifying the excitations of a non-interacting Fermi gas. This is the basic assumption underlying the Landau theory of Fermi liquids (FL), which was originally proposed as a phenomenological description of strongly interacting fermions by Landau in early 1956[1), an then established microscopically by Nozieres and Luttinger in 1962[2]. Quite a different scenario occurs in lD interacting Fermi systems. Apart from specific models developing gaps in the excitation spectrum, most fermion systems in one dimension with repulsive interactions, do have low-lying gapless excitations, like ordinary Fermi liquids, but totally different from the quasi-particles predicted by Landau theory. The low-energy behavior of most of these lD interacting fermion systems with gapless linear excitations, can be understood in terms of few model dependent constants, which parametrize all the long-wavelength properties...
2-nov-1992
Parola, Alberto
Tosatti, Erio
Fabrizio, Michele
File in questo prodotto:
File Dimensione Formato  
1963_5392_PhD_Fabrizio_Michele.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 8.73 MB
Formato Adobe PDF
8.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact