This thesis presents results from general relativistic numerical computations of primordial black-hole formation during the radiation-dominated era of the universe. Growing-mode perturbations are specified within the linear regime and their subsequent evolution is followed as they become nonlinear. We use a spherically symmetric Lagrangian code and study both super-critical perturbations, which go on to produce black holes, and sub-critical perturbations, for which the overdensity eventually disperses into the background medium. For super-critical perturbations, we revisit the results of previous work concerning scaling-laws, noting that the threshold amplitude for a perturbation to lead to black-hole formation is substantially reduced when the initial conditions are taken to represent purely growing modes. For sub-critical cases, where an initial collapse is followed by a subsequent re-expansion, strong compressions and rarefactions are seen for perturbation amplitudes near to the threshold. We have also investigated the effect of including a significant component of vacuum energy and have calculated the resulting changes in the threshold and in the slope of the scaling law. The specification of the growing-mode perturbations in the above work is approximate and in the later part of the thesis, we introduce a more sophisticated and elegant formulation in terms of curvature perturbations. This allows a direct connection to be made with the spectrum of perturbations coming from inflation and also, using this, we find that there is no longer evidence of shock production in connection with primordial black hole formation. Introducing adaptive mesh refinement into our code, we are able to follow black hole formation nearer to the critical limit and find evidence suggesting that scaling laws may continue down to very small n1asses, in contrast with previous suggestions in the literature.

Formation of primordial black holes / Musco, Ilia. - (2006 Apr 06).

Formation of primordial black holes

Musco, Ilia
2006-04-06

Abstract

This thesis presents results from general relativistic numerical computations of primordial black-hole formation during the radiation-dominated era of the universe. Growing-mode perturbations are specified within the linear regime and their subsequent evolution is followed as they become nonlinear. We use a spherically symmetric Lagrangian code and study both super-critical perturbations, which go on to produce black holes, and sub-critical perturbations, for which the overdensity eventually disperses into the background medium. For super-critical perturbations, we revisit the results of previous work concerning scaling-laws, noting that the threshold amplitude for a perturbation to lead to black-hole formation is substantially reduced when the initial conditions are taken to represent purely growing modes. For sub-critical cases, where an initial collapse is followed by a subsequent re-expansion, strong compressions and rarefactions are seen for perturbation amplitudes near to the threshold. We have also investigated the effect of including a significant component of vacuum energy and have calculated the resulting changes in the threshold and in the slope of the scaling law. The specification of the growing-mode perturbations in the above work is approximate and in the later part of the thesis, we introduce a more sophisticated and elegant formulation in terms of curvature perturbations. This allows a direct connection to be made with the spectrum of perturbations coming from inflation and also, using this, we find that there is no longer evidence of shock production in connection with primordial black hole formation. Introducing adaptive mesh refinement into our code, we are able to follow black hole formation nearer to the critical limit and find evidence suggesting that scaling laws may continue down to very small n1asses, in contrast with previous suggestions in the literature.
6-apr-2006
Miller, John Charles
Musco, Ilia
File in questo prodotto:
File Dimensione Formato  
1963_5294_PhD_Musco_Ilia.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 9.85 MB
Formato Adobe PDF
9.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact