We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic.

Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic / Poma, Flavia. - (2012 Oct 19).

Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic

Poma, Flavia
2012-10-19

Abstract

We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic.
19-ott-2012
Fantechi, Barbara
Vistoli, Angelo
Poma, Flavia
File in questo prodotto:
File Dimensione Formato  
1963_6282_Tesi.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 907.1 kB
Formato Adobe PDF
907.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4718
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact