We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic.
Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic / Poma, Flavia. - (2012 Oct 19).
Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic
Poma, Flavia
2012-10-19
Abstract
We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic.File | Dimensione | Formato | |
---|---|---|---|
1963_6282_Tesi.pdf
accesso aperto
Tipologia:
Tesi
Licenza:
Non specificato
Dimensione
907.1 kB
Formato
Adobe PDF
|
907.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.