In this thesis, we find the E-polynomials of a family of parabolic symplectic character varieties of Riemann surfaces by constructing a stratification, proving that each stratum has polynomial count, applying a result of Katz regarding the counting functions, and finally adding up the resulting E-polynomials of the strata. To count the number of rational points of the strata, we invoke a formula due to Frobenius. Our calculation make use of a formula for the evaluation of characters on semisimple elements coming from Deligne-Lusztig theory, applied to the character theory of the finite symplectic group, and Möbius inversion on the poset of set-partitions. We compute the Euler characteristic of the our character varieties with these polynomials, and show they are connected.

On the E-polynomial of a familiy of parabolic Sp2n-character varieties / Cambò, Vincenzo. - (2017 Sep 19).

On the E-polynomial of a familiy of parabolic Sp2n-character varieties

Cambò, Vincenzo
2017-09-19

Abstract

In this thesis, we find the E-polynomials of a family of parabolic symplectic character varieties of Riemann surfaces by constructing a stratification, proving that each stratum has polynomial count, applying a result of Katz regarding the counting functions, and finally adding up the resulting E-polynomials of the strata. To count the number of rational points of the strata, we invoke a formula due to Frobenius. Our calculation make use of a formula for the evaluation of characters on semisimple elements coming from Deligne-Lusztig theory, applied to the character theory of the finite symplectic group, and Möbius inversion on the poset of set-partitions. We compute the Euler characteristic of the our character varieties with these polynomials, and show they are connected.
Bruzzo, Ugo
Rodriguez-Villegas, Fernando
Cambò, Vincenzo
File in questo prodotto:
File Dimensione Formato  
Thesis.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 940.21 kB
Formato Adobe PDF
940.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/57152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact