We show that specializations of the 4d N = 2 superconformal index labeled by an integer N is given by Tr M-N where M is the Kontsevich-Soibelman monodromy operator for BPS states on the Coulomb branch. We provide evidence that the states enumerated by these limits of the index lead to a family of 2d chiral algebras A(N). This generalizes the recent results for the N = -1 case which corresponds to the Schur limit of the superconformal index. We show that this specialization of the index leads to the same integrand as that of the elliptic genus of compactification of the superconformal theory on S-2 x T-2 where we turn on 1/2 N units of U(1)(r) flux on S-2.

Superconformal index, BPS monodromy and chiral algebras / Cecotti, S.; Song, J.; Vafa, C.; Yan, W. B.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2017:11(2017), pp. 1-88. [10.1007/JHEP11(2017)013]

Superconformal index, BPS monodromy and chiral algebras

Cecotti, S.;
2017-01-01

Abstract

We show that specializations of the 4d N = 2 superconformal index labeled by an integer N is given by Tr M-N where M is the Kontsevich-Soibelman monodromy operator for BPS states on the Coulomb branch. We provide evidence that the states enumerated by these limits of the index lead to a family of 2d chiral algebras A(N). This generalizes the recent results for the N = -1 case which corresponds to the Schur limit of the superconformal index. We show that this specialization of the index leads to the same integrand as that of the elliptic genus of compactification of the superconformal theory on S-2 x T-2 where we turn on 1/2 N units of U(1)(r) flux on S-2.
2017
2017
11
1
88
013
10.1007/JHEP11(2017)013
https://doi.org/10.1007/JHEP11(2017)013
Cecotti, S.; Song, J.; Vafa, C.; Yan, W. B.
File in questo prodotto:
File Dimensione Formato  
Cecotti2017_Article_SuperconformalIndexBPSMonodrom.pdf

accesso aperto

Descrizione: Article funded by SCOAP3
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/98099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 41
social impact